Jurnal
Metroxylon Indonesia
(Indonesian Journal of Metroxylon)
Jurnal Metroxylon Indonesia
(Indonesian Journal of Metroxylon)

PENANGGUNG JAWAB
Dr. Ir. Prastowo, M.Eng (Kepala LPPM IPB)

DEWAN EDITOR
Prof. Dr. Ir. H. Mochamad Hasjim Bintoro, M.Agr (Ketua Masyarakat Sagu Indonesia)
Prof. Dr. Ir. Bambang Haryanto (BPPT)
Prof. Dr. Ir. Hengky Novarianto (Balit Palma)
Prof. Dr. Ir. Barahima Abbas (Pusat Sagu dan Umbi-umbian, UNIPA)
Dr. Ir. Endang Yuli Purwani (Balai Besar Penelitian dan Pengembangan Pasca Panen Pertanian)
Dr. Ir. Albertus Fejar Irawan (Sampoerna Agro)
Dr. Ir. Fransiscus Suramas Rembon (Universitas Haluoleo)
Dr. Ing. Ir Djodi Indriakusumo (Institut Teknologi Bandung)

EDITOR PELAKSANA
Ratih Kemala Dewi, SP, M.Si (Diploma IPB)
Muhammad Iqbal Nurulhaq, SP (Diploma IPB)
Fendri Ahmad, SP (Diploma IPB)
Agfie Juloto Pratama, SP (MASSI)
Lisna Ayula, A.Md (MASSI)
Edi Wiraguna, SP, M.Sc (Diploma IPB)

PENERBIT
Lembaga Penelitian dan Pengabdian kepada Masyarakat Institut Pertanian Bogor
Masyarakat Sagu Indonesia (MASSI)
Departemen Agromoni dan Hortikultura Institut Pertanian Bogor
Balai Besar Penelitian dan Pengembangan Pasca Panen Pertanian Kementerian Pertanian
Pusat Penelitian Sagu dan Umbi-umbian Universitas Papua
Balai Penelitian Palma Kementerian Pertanian
Kepala Keahlian Teknik Produksi Mesin FTMD Institut Teknologi Bandung
Pusat Teknologi Agroindustri BPPT

Alamat Editor
 Sekretariat Masyarakat Sagu Indonesia
Departemen Agronomi dan Hortikultura
Fakultas Pertanian, Institut Pertanian Bogor
Jl. Meranti Kampus IPB Darmaga, Bogor 16680
Telp/Fax : 0251-8629353
Email : jurnalmetroxylon@gmail.com
http://agrophort.ipb.ac.id
http://lppm.ipb.ac.id

Jurnal Metroxylon Indonesia merupakan jurnal yang menyajikan hasil penelitian, analisis kebijakan dan review yang berkaitan dengan sagu. Jurnal diterbitkan April dan Oktober

No Rekening Berlangganan:
BNI Cabang Bogor Rek No 0432725539
a.n. HMH Bintoro (Jurnal Metroxylon Indonesia)

HARGA BERLANGGANAN – belum termasuk ongkos kirim

<table>
<thead>
<tr>
<th>Pelanggan</th>
<th>Satu tahun</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pribadi</td>
<td>Rp 150.000,-</td>
</tr>
<tr>
<td>Institusi/Perpustakaan</td>
<td>Rp 200.000,-</td>
</tr>
<tr>
<td>Luar negeri</td>
<td>US$ 75,-</td>
</tr>
</tbody>
</table>
1. Seleksi dan Pelepasan Varietas Selattpanjang Meranti untuk Pengembangan Sagu (Selection and Release of Sago Palm Selattpanjang Meranti Variety for Developing Sago Palm)
Hengky Novaarianto, Meily A. Tuhao, Jeanette Kumaunang, Engelbert Manarinsong, dan Emi Sulistyowati ... 1

2. Pengaruh Jumlah Daun Anakan Tanaman Sagu (Metroxyylon spp.) terhadap Pertumbuhan Awal di Lapangan (The effect of Number Leave of Sago Palm Seedling (Metroxyylon spp.) on its Early Growth on The Field)
Muhammad Iqbal Nurulhaq, Mohamad Hasjim Bintoro, Fajar Irawan, dan Fendri Ahmad 10

3. Pengaruh Cara Ekstraksi Pati Sagu (Metroxyylon spp.) dan Aren (Arenga pinnata) terhadap Kelayakan Usaha Industri (Effect of Extraction Method Sago Starch (Metroxyylon spp.) and Sugar Palm (Arenga pinnata) to The Feasibility Starch Industry)
Ray Pratama Alamko, MHB Djoeffe, dan Nuri Setyawati ... 19

4. Pemanfaatan Ampas Sagu untuk Peningkatan Sifat Fisis Mekanik Kemasan Pangan Ramah Lingkungan (Utilisation of Sago Waste for Improving Physical Mechanical Properties due to Sustainable Food Packaging)
Fernti Fatmawati, MHB Djoeffe, Restu Piji Mumpuni, dan Evi Saviyri Iriani 26

5. Pemanfaatan Ampas Sagu (Metroxyylon spp.) sebagai Media Persemaian Cebai dan Ternung (The Utilization of Sago Waste (Metroxyylon spp.) as Plant Nursery Media of Chili and Eggplant)
Dodik Andika, MHB Djoeffe, Shandra Amarillis dan Ibnu Pamungkas .. 37

6. Karakterisasi Madera Kekasih Pati Sagu (Metroxyylon spp.) Asal Sorong Selatan (Characterization of Noodle Based on Sago Starch (Metroxyylon spp.) from South Sorong District)
Muhammad Prayoga, MHB Djoeffe, Endang Yuli Purwani, dan Ratih Kemaladi Dewi 43

7. Efek Pemangkasan dan Zat Pengatur Tumbuh terhadap Pertumbuhan Bibit Sagu (Effect of Pruning and Growth Regulator of Sago Palm Seedling Development)
Dodik Lesto, Mohamad Hasjim Bintoro, Muhammad Iqbal Nurulhaq, dan Fendri Ahmad 50

8. Pemanfaatan Ampas Sagu sebagai Briquet Biomassa (Utilisation of Sago Waste as Biomass Briquettes)
Muhammad Firdaus, MHB Djoeffe, Destieka Alyani, dan Ibnu Pamungkas 56

9. Pertumbuhan Bibit Sagu di Fase Inokulasi pada Beberapa Taraf Penggunaan Growmore (32-10-10) dan Rootone-F (Growth of Sago Palm Seed in Incubation Phase with Use Several Degrees of Growmore (32-10-10) and Rootone-F)
Muhammad Rizki Mulyanto, Mohamad Hasjim Bintoro, dan Muhammad Suwarno 63

10. Pemanfaatan Ampas Sagu untuk Budidaya Jamur Sagu (Volvariella sp.) yang Berbasis pada Kelompok Masyarakat Pengestrak Pati Sagu (Utilization of Sago Waste for Cultivation of Sago Mushroom (Volvariella sp.) Based on Group of Local People which Extracted Starch from Sago Palm)
Barahima Abbas dan Elda Kristiani Paisay .. 74

Alamat Editor
Sekretariat Masyarakat Sagu Indonesia
Departemen Agronoimi dan Hortikultura
Fakultas Pertanian, Institut Pertanian Bogor
Jl. Meranti Kampus IPB Darmaga, Bogor 16680
Tel/Fax: 0251-862953
Email: jurnalmetroxyylon@gmail.com
http://agrohort.ipb.ac.id
http://lippm.ipb.ac.id
Pemanfaatan Ampas Sagu untuk Budidaya Jamur Sagu (Volvariella sp.) yang Berbasis pada Kelompok Masyarakat Pengestrak Pati Sagu

Utilization of Sago Waste for Cultivation of Sago Mushroom (Volvariella sp.) Based on Group of Local People which Extracted Starch from Sago Palm

Barahima Abbas\(^1\) dan Elda Kristiani Paisey\(^1\)

\(^1\)Fakultas Pertanian, Universitas Papua
Jl. Gunung Salju Amban, Manokwari, Papua Barat 98314, Indonesia

ABSTRAK

Kata kunci: ampas sagu, budidaya jamur, jamur sagu

ABSTRACT

Cultivation effort of sago mushroom has a good prospect. The edible mushroom demand of domestic and international market was reported high. The products of edible mushrooms were supplied to the market still not fulfill yet. The sago mushrooms were hopped as additional mushroom for increasing the edible mushroom supplies to the market. The strategy for increasing product of the sago mushroom will be done by increasing knowledge and skill of local people which their own potentials resulted abundant extraction waste of sago pith. Pure culture and inoculation culture of sago mushroom were achieved successfully for using as seedling. The procedures for resulting pure culture and inoculation culture can be applied for resulting large amount of sago mushroom seedlings. Growth and development of mushroom seedlings on waste extraction medium from sago pith that it is placed on plastic pots and stack of extraction waste of sago pith in the field were successfully achieved and successfully resulted pinhead, egg, elongation, and maturity stages of sago mushroom. However, the numbers of sago mushroom harvested were observed it still low per unit weight of the medium growth used. Increasing productivities of sago mushroom need to be supplied essential elements to the medium growth.

Keywords: mushroom cultivation, sago waste, volvariella sp

PENDAHULUAN

Pengembangan jamur sagu yang berbasis pada kelompok masyarakat diawali di lokasi-lokasi yang memiliki potensi limbah ampas sagu yang banyak. Salah satu Kabupaten di Papua yang memiliki areal sagu yang luas dan limbah ampas sagu yang banyak yaitu Kabupaten Yapen. Luas areal sagu di Yapen, Waropen, Sarmi dan Biak diperkirakan seluas 25,133 ha (Kertopermono, 1996). Daerah tersebut memiliki potensi buangan ampas sagu yang tinggi sehingga perlu upaya pemanfaatan limbah ampas sagu yang dapat meningkatkan pendapatan masyarakat. Ampas sagu dapat digunakan sebagai media tumbuh jamur sagu (Abbas dan Listyorini, 2010), pakan ternak

\(^4\) Penulis untuk korespondensi. email: hmb_bintoro@yahoo.com
J. Metroxylon Indonesia, April 2016

(Nggobe, 2006), dan mengontrol pertumbuhan gulma (Utami et al., 2006). Berdasarkan hasil survey yang telah dilakukan ditemukan terdapat jamur edibel yang tumbuh di ampas sagu buangan hasil ekstraksi pati masyarakat yang menyerupai jamur merang.

Peluang bisnis jamur pangan (edibel), termasuk jamur sagu memiliki prospek yang bagus karena harganya yang mahal dan peluang pasar ekspor yang terbuka luas. Kebutuhan jamur edibel saat ini 35% pasar dalam negeri dan 65% pasar luar negeri (Mehi, 2007). Selanjutnya diungkapkan bahwa kebutuhan jamur edibel dunia mencapai 1,142,500 MT, yang terdiri atas pasar Eropa 402,500 MT, Asia dan Australia 3,000 MT, USA 486,000 MT, Jepang dan Arab 1,000 MT, Indonesia sendiri sebesar 32,000 MT, dan negara lainnya 250,000 MT dengan harga US$ 2.5-4 kg⁻¹.

Biakan murni dibuat dengan cara menumbuhkana jaringan stipe pada formulasi media Knudson C (Knc) yang dipertikai dengan air kelapa 20%. Biakan semai dibuat dengan cara menumbuhkana biakan murni pada media bijian-bijian yaitu campuran biji kacang hijau, tepung sagu, dan kapur dengan perbandingan 10:1:0:1. Inokulasi biakan semai pada media semi steril dilakukan dengan cara menyebarkan biakan semai pada permukaan media ampas sagu yang telah mengalami pengomposan selama satu bulan dan disterilisasi dengan cara mengukus selama 2 jam. Inokulasi biakan semai pada hamparan ampas sagu buangan masyarakat dilakukan dengan meneharkan biakan semai pada permukaan ampas sagu buangan masyarakat yang telah berumur dua minggu.
Pertumbuhan dan perkembangan jaringan stipe membentuk biakan murni diperlukan waktu 7 hari. Hifa-hifa yang tumbuh berwarna putih, jumlahnya sangat banyak, dan pertumbuhannya yang cepat (Gambar 2). Penelitian sebelumnya menunjukkan bahwa air kelapa menginduksi pertumbuhan hifa yang cepat. Mineral yang terkandung pada air kelapa yaitu K, Na, Ca, Mg, Fe, Cu, P dan S, vitamin C, asam nikotinat, asam pantotenat, asam folat, biotin dan riboflavin (Santoso, 2003; Muhammad dan Vladimir, 2007).

Mineral dan vitamin, serta senyawa organik lain yang terdapat pada air kelapa diduga memecahkan dan memupuk sel jamur yang membentuk hifa dengan cepat. Respon pertumbuhan sel dan jaringan yang baik akibat penambahan air kelapa dalam medium tumbuh juga dilaporkan dapat memecahkan dan memupuk sel-sel ekspans yang dikultur membentuk embryogenesis pada tanaman Gnetum mangostinum L. (Minth, 2001). Studi sebelumnya juga dilaporkan bahwa penambahan air kelapa 15% mempercepat pertumbuhan kalus, regenerasi tunas, dan pertumbuhan tunas pada Spinacia oleracea L. (Khayri et al., 1992). Selanjutnya Peixe et al. (2007) melaporkan bahwa air kelapa 5% dan BAP 2.22 µM berpengaruh baik pada perkembangan mikro Olea europeae L. Syafl et al. (2000) melaporkan bahwa air kelapa 20% dapat memacu pertumbuhan kalus dan akar tanaman. Disamping itu air kelapa dapat digunakan untuk mempertahankan imumatur bovin eocytes dalam memproduksi embrio secara In Vitro (Cordeiro et al., 2006). Berdasarkan penelitian tersebut dan penelitian sebelumnya pada sel hewan dan tumbuhan dapat diketahui bahwa air kelapa berpengaruh baik terhadap pertumbuhan sel jamur, tumbuhan dan hewan.

Biakan murni jamur sagu yang diimulasikan pada media biji-bijian memperlihatkan pertumbuhan hifa yang melimpah dan vigorous. Penampilan biakan semai yang dihasilkan disajikan pada Gambar 3. Hasil penelitian sebelumnya dilaporkan bahwa media yang baik untuk pertumbuhan jamur Coprinus cinereus, Pleurotus flabellatus, dan Volvariola volvacea yaitu biji sorgum (Mshandete dan Cuff, 2008). Mengingat biji sorgum sulit didapatkan, maka digunakan biji dari kaecang hijau ternyata hasilnya tidak berbeda dengan biji sorgum karena pertumbuhan hifa jamur sagu pada biji kaecang hijau juga tumbuh melimpah dalam waktu yang relatif singkat (Gambar 3).

Hasil inkulasi pada media semi steril menunjukkan bahwa media yang digunakan dapat menginduksi pembentukan primordia basidiocarps dalam jumlah yang banyak. Penampilan pertumbuhan hifa dan primordia basidiocarps yang terbentuk pada media ampus sagu yang disterilkan disajikan pada Gambar 4. Media tersebut juga dapat menginduksi pembentukan primordial basidiocarps yang selanjutnya berkembang membentuk basidiocarps (tubuh buah).

Media tumbuh semi steril yang digunakan juga dapat menginduksi pembentukan tubuh
Gambar 3. Pertumbuhan hifa jamur sagu untuk dijadikan biakan semai pada media biji-bijian

Figure 3. The growth of sago mushroom hyphae for using as inoculum seedlings on cereal medium

Gambar 4. Penampilan inisiasi pertumbuhan basidiocarpus. Hifa yang akan menjadi primordia basidiocarpus (A) dan primordia basidiocarpus (B)

Figure 4. Performance of primordial basidiocarpus growth initiation. Hyphae will be primordial of basidiocarpus (A) and primordial of basidiocarps (B)

Ampas sagu yang diinokulasi dengan biakan semai bukan merupakan buangan dari hasil perasan yang baru, tetapi kira-kira berumur dua minggu sesudah amaps sagu tersebut diambil patinya (dilakukan ekstraksi). Biakan semai jamur sagu yang diinokulasikan di hamparan amaps sagu buangan masyarakat di lapang menunjukkan pertumbuhan primordia dan tubuh buah jamur sagu yang jumlahnya masih sedikit. Penampilan pertumbuhan hifa menjadi primordia basidiocarpus disajikan pada Gambar 6. Saat dua minggu setelah diinokulasi dengan biakan semai pada tumpukan amaps sagu akan mengalami perubahan pertumbuhan hifa menjadi fase awal pembentukan primordia basidiocarpus (Gambar 6B). Pembentukan primordia basidiocarpus terjadi saat tiga minggu setelah diinokulasi ke tumpukan sagu (6C). Primordia basidiocarpus sangat banyak, tetapi yang tumbuh membentuk tubuh buah sedikit. Penyebab kurangnya basidiocarpus yang terbentuk diduga disebabkan keterbatasan hara yang terdapat pada tumpukan amaps sagu yang dapat mendukung pertumbuhan primordia basidiocarpus menjadi
Gambar 6. Pertumbuhan dan perkembangan bibit jamur sagu yang diinokulasikan di lapang. Tumpukan ampas sagu yang dinokulasi dengan biakan semai jamur sagu (A), Inisiasi pertumbuhan basidiocarpus (B), dan primordia basidiocarpus (C)

Figure 6. The growth and development of sago mushroom seedlings in the field. Stack of sago waste were inoculated with sago mushroom seedlings (A), Growth initiation of basidiocarpus (B), and the primordial of basidiocarpus (C)

Gambar 7. Pertumbuhan tubuh buah jamur sagu yang telah mencapai fase pertumbuhan dewasa

Figure 7. Growth of sago mushroom basidiocarps that have reached maturity stage of growth

Inisiasi usaha budidaya jamur sagu yang berbasis pada masyarakat lokal yang memiliki potensi dan buangan ampas sagu yang melimpah telah berhasil dilaksanakan. Pembuatan biakan murni dan biakan semai untuk dijadikan bibit telah berhasil dengan baik dan dapat dijadikan acuan untuk produksi bibit jamur sagu skala besar. Media ampas sagu dalam pot plastik dan media hamparan buangan ampas sagu di alam bebas yang dinokulasi dengan bibit jamur sagu dapat mendorong pertumbuhan bibit jamur sagu ke fase primordia, telur, elongasi, dan maturiti, tetapi jumlah tubuh buah jamur sagu yang dihasilkan persatuan bahan organik ampas sagu yang digunakan masih sedikit. Meningkatkan efisiensi bahan organik ampas sagu yang digunakan dapat dilakukan dengan cara menambahkan bahan organik yang digunakan.

UCAPAN TERIMA KASIH

Ucapan terima kasih disampaikan kepada pengelola proyek Hibah Bersaing DP2M Dikti dengan kontrak Nomor: 150/SP211/PL/DIT.LITABMAS/11/2015 atas dukungan dana penelitian yang diberikan sehingga penelitian ini dapat terlaksana sebagaimana mestinya.

DAFTAR PUSTAKA

Cordeiro MS, Silva EHS, Miranda MS, Biondi FC, Santos SSD, Ohashi OM. 2006. The used of coconut water solution (Cocos nucifera) as a holding medium for immature bovin oocytes for in vitro embryo production. Anim Reprod. 3(3):376-379.

J. Metroxylon Indonesia, April 2016

